Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 623
1.
Cell Death Dis ; 12(11): 955, 2021 10 16.
Article En | MEDLINE | ID: mdl-34657146

Platelets are generated from the cytoplasm of megakaryocytes (MKs) via actin cytoskeleton reorganization. Zyxin is a focal adhesion protein and wildly expressed in eukaryotes to regulate actin remodeling. Zyxin is upregulated during megakaryocytic differentiation; however, the role of zyxin in thrombopoiesis is unknown. Here we show that zyxin ablation results in profound macrothrombocytopenia. Platelet lifespan and thrombopoietin level were comparable between wild-type and zyxin-deficient mice, but MK maturation, demarcation membrane system formation, and proplatelet generation were obviously impaired in the absence of zyxin. Differential proteomic analysis of proteins associated with macrothrombocytopenia revealed that glycoprotein (GP) Ib-IX was significantly reduced in zyxin-deficient platelets. Moreover, GPIb-IX surface level was decreased in zyxin-deficient MKs. Knockdown of zyxin in a human megakaryocytic cell line resulted in GPIbα degradation by lysosomes leading to the reduction of GPIb-IX surface level. We further found that zyxin was colocalized with vasodilator-stimulated phosphoprotein (VASP), and loss of zyxin caused diffuse distribution of VASP and actin cytoskeleton disorganization in both platelets and MKs. Reconstitution of zyxin with VASP binding site in zyxin-deficient hematopoietic progenitor cell-derived MKs restored GPIb-IX surface expression and proplatelet generation. Taken together, our findings identify zyxin as a regulator of platelet biogenesis and GPIb-IX surface expression through VASP-mediated cytoskeleton reorganization, suggesting possible pathogenesis of macrothrombocytopenia.


Blood Platelets/metabolism , Cell Membrane/metabolism , Platelet Glycoprotein GPIb-IX Complex/metabolism , Zyxin/metabolism , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/ultrastructure , Animals , Blood Platelets/ultrastructure , Bone Marrow/ultrastructure , Cell Adhesion Molecules/metabolism , Cell Differentiation , Cell Line , Female , Fibrinogen/pharmacology , Humans , Lysosomes/metabolism , Male , Megakaryocytes/metabolism , Megakaryocytes/ultrastructure , Mice , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Microtubules/metabolism , Microtubules/ultrastructure , Mutant Proteins/metabolism , Phosphoproteins/metabolism , Platelet Count , Protein Binding/drug effects , Proteolysis , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Thrombin/pharmacology , Thrombocytopenia , Zyxin/deficiency
2.
Stem Cell Reports ; 16(11): 2768-2783, 2021 11 09.
Article En | MEDLINE | ID: mdl-34678208

Calreticulin (CALR) mutations are driver mutations in myeloproliferative neoplasms (MPNs), leading to activation of the thrombopoietin receptor and causing abnormal megakaryopoiesis. Here, we generated patient-derived CALRins5- or CALRdel52-positive induced pluripotent stem cells (iPSCs) to establish an MPN disease model for molecular and mechanistic studies. We demonstrated myeloperoxidase deficiency in granulocytic cells derived from homozygous CALR mutant iPSCs, rescued by repairing the mutation using CRISPR/Cas9. iPSC-derived megakaryocytes showed characteristics of primary megakaryocytes such as formation of demarcation membrane system and cytoplasmic pro-platelet protrusions. Importantly, CALR mutations led to enhanced megakaryopoiesis and accelerated megakaryocytic development in a thrombopoietin-independent manner. Mechanistically, our study identified differentially regulated pathways in mutated versus unmutated megakaryocytes, such as hypoxia signaling, which represents a potential target for therapeutic intervention. Altogether, we demonstrate key aspects of mutated CALR-driven pathogenesis dependent on its zygosity, and found novel therapeutic targets, making our model a valuable tool for clinical drug screening in MPNs.


Calreticulin/genetics , Frameshift Mutation , Induced Pluripotent Stem Cells/metabolism , Megakaryocytes/metabolism , Myeloproliferative Disorders/genetics , Calreticulin/metabolism , Cell Differentiation/genetics , Cell Proliferation/genetics , Cells, Cultured , Flow Cytometry , Gene Expression Profiling/methods , Humans , Megakaryocytes/ultrastructure , Microscopy, Electron, Transmission , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , Reverse Transcriptase Polymerase Chain Reaction , Thrombopoiesis/genetics
4.
Thromb Haemost ; 121(9): 1206-1219, 2021 09.
Article En | MEDLINE | ID: mdl-33940656

BACKGROUND: Several platelet-derived microRNAs are associated with platelet reactivity (PR) and clinical outcome in cardiovascular patients. We previously showed an association between miR-204-5p and PR in stable cardiovascular patients, but data on functional mechanisms are lacking. AIMS: To validate miR-204-5p as a regulator of PR in platelet-like structures (PLS) derived from human megakaryocytes and to address mechanistic issues. METHODS: Human hematopoietic stem cells were differentiated into megakaryocytes, enabling the transfection of miR-204-5p and the recovery of subsequent PLS. The morphology of transfected megakaryocytes and PLS was characterized using flow cytometry and microscopy. The functional impact of miR-204-5p was assessed using a flow assay, the quantification of the activated form of the GPIIbIIIa receptor, and a fibrinogen-binding assay. Quantitative polymerase chain reaction and western blot were used to evaluate the impact of miR-204-5p on a validated target, CDC42. The impact of CDC42 modulation was investigated using a silencing strategy. RESULTS: miR-204-5p transfection induced cytoskeletal changes in megakaryocytes associated with the retracted protrusion of proPLS, but it had no impact on the number of PLS released. Functional assays showed that the PLS produced by megakaryocytes transfected with miR-204-5p were more reactive than controls. This phenotype is mediated by the regulation of GPIIbIIIa expression, a key contributor in platelet-fibrinogen interaction. Similar results were obtained after CDC42 silencing, suggesting that miR-204-5p regulates PR, at least in part, via CDC42 downregulation. CONCLUSION: We functionally validated miR-204-5p as a regulator of the PR that occurs through CDC42 downregulation and regulation of fibrinogen receptor expression.


Blood Platelets/metabolism , Megakaryocytes/metabolism , MicroRNAs/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Thrombopoiesis , cdc42 GTP-Binding Protein/metabolism , Blood Platelets/ultrastructure , Humans , Megakaryocytes/ultrastructure , MicroRNAs/genetics , Phenotype , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Signal Transduction , cdc42 GTP-Binding Protein/genetics
5.
Cells ; 10(4)2021 03 24.
Article En | MEDLINE | ID: mdl-33804965

Megakaryocytes (MKs) release platelets into the lumen of bone marrow (BM) sinusoids while remaining to reside within the BM. The morphogenetic events of this complex process are still not fully understood. We combined confocal laser scanning microscopy with transmission and serial block-face scanning electron microscopy followed by 3D-reconstruction on mouse BM tissue sections. These analyses revealed that MKs in close vicinity to BM sinusoid (BMS) wall first induce the lateral retraction of CXCL12-abundant reticular (CAR) cells (CAR), followed by basal lamina (BL) degradation enabling direct MK-sinusoidal endothelial cells (SECs) interaction. Subsequently, an endothelial engulfment starts that contains a large MK protrusion. Then, MK protrusions penetrate the SEC, transmigrate into the BMS lumen and form proplatelets that are in direct contact to the SEC surface. Furthermore, such processes are induced on several sites, as observed by 3D reconstructions. Our data demonstrate that MKs in interaction with CAR-cells actively induce BMS wall alterations, including CAR-cell retraction, BL degradation, and SEC engulfment containing a large MK protrusion. This results in SEC penetration enabling the migration of MK protrusion into the BMS lumen where proplatelets that are adherent to the luminal SEC surface are formed and contribute to platelet release into the blood circulation.


Bone Marrow/metabolism , Cell Surface Extensions/metabolism , Chemokine CXCL12/metabolism , Megakaryocytes/metabolism , Mesenchymal Stem Cells/metabolism , Animals , Bone Marrow/ultrastructure , Cell Surface Extensions/ultrastructure , Femur/metabolism , Megakaryocytes/ultrastructure , Mice, Inbred C57BL , Transendothelial and Transepithelial Migration
6.
Br J Haematol ; 192(5): 909-921, 2021 03.
Article En | MEDLINE | ID: mdl-33528045

Lowe syndrome (LS) is an oculocerebrorenal syndrome of Lowe (OCRL1) genetic disorder resulting in a defect of the OCRL protein, a phosphatidylinositol-4,5-bisphosphate 5-phosphatase containing various domains including a Rho GTPase-activating protein (RhoGAP) homology domain catalytically inactive. We previously reported surgery-associated bleeding in patients with LS, suggestive of platelet dysfunction, accompanied with a mild thrombocytopenia in several patients. To decipher the role of OCRL in platelet functions and in megakaryocyte (MK) maturation, we conducted a case-control study on 15 patients with LS (NCT01314560). While all had a drastically reduced expression of OCRL, this deficiency did not affect platelet aggregability, but resulted in delayed thrombus formation on collagen under flow conditions, defective platelet spreading on fibrinogen and impaired clot retraction. We evidenced alterations of the myosin light chain phosphorylation (P-MLC), with defective Rac1 activity and, inversely, elevated active RhoA. Altered cytoskeleton dynamics was also observed in cultured patient MKs showing deficient proplatelet extension with increased P-MLC that was confirmed using control MKs transfected with OCRL-specific small interfering(si)RNA (siOCRL). Patients with LS also had an increased proportion of circulating barbell-shaped proplatelets. Our present study establishes that a deficiency of the OCRL protein results in a defective actomyosin cytoskeleton reorganisation in both MKs and platelets, altering both thrombopoiesis and some platelet responses to activation necessary to ensure haemostasis.


Blood Platelets/cytology , Megakaryocytes/cytology , Oculocerebrorenal Syndrome/genetics , Phosphoric Monoester Hydrolases/physiology , Thrombopoiesis/physiology , Actomyosin/analysis , Adolescent , Adult , Anemia/etiology , Blood Coagulation , Blood Platelets/ultrastructure , Case-Control Studies , Cell Shape , Child , Collagen , Cytoskeleton/ultrastructure , Female , Gene Silencing , Humans , Male , Megakaryocytes/ultrastructure , Middle Aged , Mutation , Myosin Light Chains/metabolism , Oculocerebrorenal Syndrome/blood , Oculocerebrorenal Syndrome/pathology , Phosphoric Monoester Hydrolases/deficiency , Phosphoric Monoester Hydrolases/genetics , Phosphorylation , Protein Domains , Protein Processing, Post-Translational , RNA, Small Interfering/genetics , Signal Transduction , Thrombocytopenia/etiology , Young Adult
10.
Blood ; 136(6): 715-725, 2020 08 06.
Article En | MEDLINE | ID: mdl-32384141

Studies of inherited platelet disorders have provided many insights into platelet development and function. Loss of function of neurobeachin-like 2 (NBEAL2) causes gray platelet syndrome (GPS), where the absence of platelet α-granules indicates NBEAL2 is required for their production by precursor megakaryocytes. The endoplasmic reticulum is a dynamic network that interacts with numerous intracellular vesicles and organelles and plays key roles in their development. The megakaryocyte endoplasmic reticulum is extensive, and in this study we investigated its role in the biogenesis of α-granules by focusing on the membrane-resident trafficking protein SEC22B. Coimmunoprecipitation (co-IP) experiments using tagged proteins expressed in human HEK293 and megakaryocytic immortalized megakaryocyte progenitor (imMKCL) cells established binding of NBEAL2 with SEC22B, and demonstrated that NBEAL2 can simultaneously bind SEC22B and P-selectin. NBEAL2-SEC22B binding was also observed for endogenous proteins in human megakaryocytes using co-IP, and immunofluorescence microscopy detected substantial overlap. SEC22B binding was localized to a region of NBEAL2 spanning amino acids 1798 to 1903, where 2 GPS-associated missense variants have been reported: E1833K and R1839C. NBEAL2 containing either variant did not bind SEC22B coexpressed in HEK293 cells. CRISPR/Cas9-mediated knockout of SEC22B in imMKCL cells resulted in decreased NBEAL2, but not vice versa. Loss of either SEC22B or NBEAL2 expression resulted in failure of α-granule production and reduced granule proteins in imMKCL cells. We conclude that SEC22B is required for α-granule biogenesis in megakaryocytes, and that interactions with SEC22B and P-selectin facilitate the essential role of NBEAL2 in granule development and cargo stability.


Blood Proteins/physiology , Cytoplasmic Granules/physiology , Endoplasmic Reticulum/physiology , Megakaryocytes/ultrastructure , Organelle Biogenesis , R-SNARE Proteins/physiology , Binding Sites , Blood Proteins/deficiency , Blood Proteins/genetics , Cells, Cultured , Gene Knockout Techniques , Gray Platelet Syndrome/genetics , HEK293 Cells , Humans , Immunoprecipitation , Megakaryocyte Progenitor Cells , Megakaryocytes/metabolism , Microscopy, Confocal , Microscopy, Fluorescence , Mutation, Missense , P-Selectin/physiology , Protein Interaction Mapping , Recombinant Proteins/metabolism
11.
FASEB J ; 34(5): 6871-6887, 2020 05.
Article En | MEDLINE | ID: mdl-32248623

This study used constitutive CD226 gene knockout (KO) mice as a model to investigate the functions and mechanisms of CD226 in megakaryocyte (MK) maturation and platelet activation. Although CD226 deficiency did not cause MK polyploidization or platelet granule abnormalities, increased MK counts were detected in the femora bone marrow (BM) and spleen of CD226 KO mice. Particularly, CD226 KO mice have a more extensive membrane system in MKs and platelets than wild-type (WT) mice. We also demonstrated that CD226 KO mice displayed increased platelet counts, shortened bleeding time, and enhanced platelet aggregation. CD226 KO platelets had an increased mature platelet ratio compared to the control platelets. In addition, the observed reduction in bleeding time may be due to decreased nitric oxide (NO) production in the platelets. Platelet-specific CD226-deficient mice showed similar increased MK counts, shortened bleeding time, enhanced platelet aggregation, and decreased NO production in platelets. Furthermore, we performed middle cerebral artery occlusion-reperfusion surgery on WT and CD226 KO mice to explore the potential effect of CD226 on acute ischemia-reperfusion injury; the results revealed that CD226 deficiency led to significantly increased infarct area. Thus, CD226 is a promising candidate for the treatment of thrombotic disorders.


Antigens, Differentiation, T-Lymphocyte/blood , Megakaryocytes/cytology , Megakaryocytes/physiology , Platelet Activation/physiology , Animals , Antigens, Differentiation, T-Lymphocyte/genetics , Blood Platelets/physiology , Blood Platelets/ultrastructure , Brain Ischemia/blood , Brain Ischemia/genetics , Brain Ischemia/pathology , Disease Models, Animal , Female , Integrin beta3/blood , Male , Megakaryocytes/ultrastructure , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Transmission , Platelet Activation/genetics , Platelet Adhesiveness/genetics , Platelet Adhesiveness/physiology , Platelet Aggregation/genetics , Platelet Aggregation/physiology , Platelet Count , Thrombopoiesis/genetics , Thrombopoiesis/physiology
12.
Sci Rep ; 10(1): 4621, 2020 03 12.
Article En | MEDLINE | ID: mdl-32165642

Histones are typically located within the intracellular compartment, and more specifically, within the nucleus. When histones are located within the extracellular compartment, they change roles and become damage-associated molecular patterns (DAMPs), promoting inflammation and coagulation. Patients with sepsis have increased levels of extracellular histones, which have been shown to correlate with poor prognosis and the development of sepsis-related sequelae, such as end-organ damage. Until now, neutrophils were assumed to be the primary source of circulating histones during sepsis. In this paper, we show that megakaryocytes contain extranuclear histones and transfer histones to their platelet progeny. Upon examination of isolated platelets from patients with sepsis, we identified that patients with sepsis have increased amounts of platelet-associated histones (PAHs), which appear to be correlated with the type of infection. Taken together, these results suggest that megakaryocytes and platelets may be a source of circulating histones during sepsis and should be further explored.


Blood Platelets/metabolism , Cytoplasm/metabolism , Histones/metabolism , Megakaryocytes/metabolism , Sepsis/metabolism , Biomarkers , Blood Coagulation , Blood Platelets/ultrastructure , Cytoplasm/ultrastructure , Fluorescent Antibody Technique , Humans , Megakaryocytes/ultrastructure , Models, Biological , Sepsis/blood , Sepsis/etiology
13.
Thromb Haemost ; 119(9): 1461-1470, 2019 Sep.
Article En | MEDLINE | ID: mdl-31352676

Bernard-Soulier syndrome (BSS) is a hereditary macrothrombocytopenia caused by defects in the glycoprotein (GP) Ib-IX-V complex. The mechanism of giant platelet formation remains undefined. Currently, megakaryocytes (MKs) can be generated from induced pluripotent stem cells (iPSCs) to study platelet production under pharmacological or genetic manipulations. Here, we generated iPSC lines from two BSS patients with mutations in different genes (GP1BA and GP1BB: termed BSS-A and BSS-B, respectively). The iPSC-derived MKs and platelets were examined under electron microscopy and stained by immunofluorescence to observe proplatelet formation and measure platelet diameters which were defined by circumferential tubulin. BSS-iPSCs produced abnormal proplatelets with thick shafts and tips. In addition, compared with the normal iPSCs, the diameters were larger in platelets derived from BSS-A and BSS-B with the means ± standard deviations of 4.34 ± 0.043 and 3.88 ± 0.045 µm, respectively (wild-type iPSCs 2.61 ± 0.025 µm, p < 0.001). Electron microscopy revealed giant platelets with the abnormal demarcation membrane system. Correction of BSS-A and BSS-B-iPSCs using lentiviral vectors containing respective GP1BA and GP1BB genes improved proplatelet structures and platelet ultrastructures as well as reduced platelets sizes. In conclusion, the iPSC model can be used to explore molecular mechanisms and potential therapy for BSS.


Bernard-Soulier Syndrome/pathology , Blood Platelets/physiology , Cell Membrane/ultrastructure , Induced Pluripotent Stem Cells/physiology , Megakaryocytes/physiology , Platelet Glycoprotein GPIb-IX Complex/metabolism , Bernard-Soulier Syndrome/genetics , Bernard-Soulier Syndrome/therapy , Blood Coagulation/genetics , Blood Platelets/ultrastructure , Cell Differentiation , Cell Line , Cell Shape/genetics , Cell- and Tissue-Based Therapy , Cellular Reprogramming Techniques , Female , Genetic Therapy , Humans , Induced Pluripotent Stem Cells/ultrastructure , Lentivirus/genetics , Megakaryocytes/ultrastructure , Microscopy, Electron , Platelet Glycoprotein GPIb-IX Complex/genetics
14.
Sci Rep ; 9(1): 7726, 2019 05 22.
Article En | MEDLINE | ID: mdl-31118482

Coordinated reorganization of cytoskeletal structures is critical for key aspects of platelet physiology. While several studies have addressed the role of microtubules and filamentous actin in platelet production and function, the significance of their crosstalk in these processes has been poorly investigated. The microtubule-actin cross-linking factor 1 (MACF1; synonym: Actin cross-linking factor 7, ACF7) is a member of the spectraplakin family, and one of the few proteins expressed in platelets, which possess actin and microtubule binding domains thereby facilitating actin-microtubule interaction and regulation. We used megakaryocyte- and platelet-specific Macf1 knockout (Macf1fl/fl, Pf4-Cre) mice to study the role of MACF1 in platelet production and function. MACF1 deficient mice displayed comparable platelet counts to control mice. Analysis of the platelet cytoskeletal ultrastructure revealed a normal marginal band and actin network. Platelet spreading on fibrinogen was slightly delayed but platelet activation and clot traction was unaffected. Ex vivo thrombus formation and mouse tail bleeding responses were similar between control and mutant mice. These results suggest that MACF1 is dispensable for thrombopoiesis, platelet activation, thrombus formation and the hemostatic function in mice.


Blood Platelets/ultrastructure , Cytoskeleton/ultrastructure , Microfilament Proteins/physiology , Thrombosis/metabolism , Animals , Cell Shape , Female , Hemostasis , Male , Megakaryocytes/chemistry , Megakaryocytes/ultrastructure , Mice , Mice, Knockout , Microfilament Proteins/deficiency , Microfilament Proteins/genetics , Platelet Activation , Platelet Aggregation , Thrombopoiesis
15.
Sci Rep ; 8(1): 15808, 2018 10 25.
Article En | MEDLINE | ID: mdl-30361531

Platelets are produced upon profound reorganization of mature megakaryocytes (MK) leading to proplatelet elongation and release into the blood stream, a process termed thrombopoiesis. This highly dynamic process requires microtubules (MT) reorganization by mechanisms that are still incompletely understood. Adenomatous polyposis coli (APC) is a microtubule plus-end tracking protein involved in the regulation of MT in a number of cell systems and its inactivation has been reported to alter hematopoiesis. The aim of our study was to investigate the role of APC in megakaryopoiesis and the final steps of platelet formation. Down-regulation of APC in cultured human MK by RNA interference increased endomitosis and the proportion of cells able to extend proplatelets (68.8% (shAPC1) and 52.5% (shAPC2) vs 28.1% in the control). Similarly an increased ploidy and amplification of the proplatelet network were observed in MK differentiated from Lin- cells of mice with APC-deficiency in the MK lineage. In accordance, these mice exhibited increased platelet counts when compared to wild type mice (1,323 ± 111 vs 919 ± 52 platelets/µL; n = 12 p 0.0033**). Their platelets had a normal size, ultrastructure and number of microtubules coils and their main functions were also preserved. Loss of APC resulted in lower levels of acetylated tubulin and decreased activation of the Wnt signaling pathway. Thus, APC appears as an important regulator of proplatelet formation and overall thrombopoiesis.


Adenomatous Polyposis Coli Protein/metabolism , Blood Platelets/metabolism , Microtubules/metabolism , Acetylation , Adenomatous Polyposis Coli Protein/deficiency , Animals , Blood Platelets/ultrastructure , Cell Lineage , Cells, Cultured , Megakaryocytes/cytology , Megakaryocytes/metabolism , Megakaryocytes/ultrastructure , Mice, Inbred C57BL , Mice, Transgenic , Microtubules/ultrastructure , Platelet Count , Ploidies , Wnt Signaling Pathway
16.
Biochem Biophys Res Commun ; 505(1): 168-175, 2018 10 20.
Article En | MEDLINE | ID: mdl-30243726

Megakaryocytopoiesis results in the formation of platelets, which are essential for hemostasis. Decreased production or increased destruction of platelets can cause thrombocytopenia, in which platelet transfusion is the mode of treatment. The present study is aimed in generation of megakaryocytes (MKs) and platelet from human hematopoietic stem cells (HSCs). The purity of HSCs was assessed through Flow cytometry and immunocytochemistry (ICC) studies. These pure HSCs were induced with thrombopoietin (TPO), similarly with Andrographis paniculata extract (APE) for 21 days to generate MKs. The APE is mainly composed of andrographolide which stimulates TPO from the liver, and this binds to CD110 present on the surface of HSCs and triggers the proliferation of HSCs and initiate higher MKs population subsequently, a large number of platelets. The results of the present study showed increased proliferation of HSCs grown in the presence of APE and revealed a high population of CD41a and CD42b positive MKs as enumerated by Flow cytometry compared with TPO induced MKs. These results also concurred with qRT-PCR and western blot analysis. The scanning electron microscopy (SEM) revealed the morphology of differentiated MKs and platelets were similar to human blood platelets. The differentiated MKs in APE exhibited polyploidy up to 32 N while TPO induced MKs showed polyploidy of 8 N, these results corroborated with colony forming unit assay. On thrombin stimulation, high expression of P-selectin (CD62p) and fibrinogen binding were detected in APE induced platelets. Autologous transplantation of platelets generated from APE may be a useful option in thrombocytopenia condition.


Blood Platelets/cytology , Cell Differentiation , Hematopoietic Stem Cells/cytology , Megakaryocytes/cytology , Andrographis paniculata , Cells, Cultured , Flow Cytometry , Gene Expression/drug effects , Humans , Megakaryocytes/metabolism , Megakaryocytes/ultrastructure , Microscopy, Electron, Scanning , Plant Extracts/pharmacology , Thrombopoiesis/drug effects , Thrombopoiesis/genetics , Thrombopoietin/pharmacology
17.
Methods Mol Biol ; 1812: 217-231, 2018.
Article En | MEDLINE | ID: mdl-30171581

In this chapter, we describe the study of bone marrow megakaryocytes (MKs) using a high-resolution 3D imaging approach known as focused ion beam-scanning electron microscopy (FIB-SEM). The apparatus consists of a scanning electron microscope equipped with a focused gallium ion beam, used to sequentially mill away the sample surface, and an electron beam, used to image the milled surfaces. This produces a series of ultrastructural images which can be computationally reconstructed into three-dimensional (3D) volume images. Using this approach it is possible to characterize the 3D ultrastructure of MKs in their native bone marrow environment, to study subcellular organelle interactions in the context of a complete cell and to quantify specific features. This chapter provides protocols for sample preparation, image acquisition and 3D reconstruction, the whole procedure requiring about 7-8 days. It also describes a method combining light microscopy (LM) with FIB-SEM, a procedure called correlative light electron microscopy (CLEM), which allows the site-specific 3D imaging of MKs in tissues.


Imaging, Three-Dimensional/methods , Megakaryocytes/ultrastructure , Animals , Blood Platelets , Microscopy, Electron, Scanning
18.
Arterioscler Thromb Vasc Biol ; 38(5): 1037-1051, 2018 05.
Article En | MEDLINE | ID: mdl-29519941

OBJECTIVE: Platelet secretion is crucial for many physiological platelet responses. Even though several regulators of the fusion machinery for secretory granule exocytosis have been identified in platelets, the underlying mechanisms are not yet fully characterized. APPROACH AND RESULTS: By studying a mouse model (cKO [conditional knockout]Kif5b) lacking Kif5b (kinesin-1 heavy chain) in its megakaryocytes and platelets, we evidenced unstable hemostasis characterized by an increase of blood loss associated to a marked tendency to rebleed in a tail-clip assay and thrombus instability in an in vivo thrombosis model. This instability was confirmed in vitro in a whole-blood perfusion assay under blood flow conditions. Aggregations induced by thrombin and collagen were also impaired in cKOKif5b platelets. Furthermore, P-selectin exposure, PF4 (platelet factor 4) secretion, and ATP release after thrombin stimulation were impaired in cKOKif5b platelets, highlighting the role of kinesin-1 in α-granule and dense granule secretion. Importantly, exogenous ADP rescued normal thrombin induced-aggregation in cKOKif5b platelets, which indicates that impaired aggregation was because of defective release of ADP and dense granules. Last, we demonstrated that kinesin-1 interacts with the molecular machinery comprising the granule-associated Rab27 (Ras-related protein Rab-27) protein and the Slp4 (synaptotagmin-like protein 4/SYTL4) adaptor protein. CONCLUSIONS: Our results indicate that a kinesin-1-dependent process plays a role for platelet function by acting into the mechanism underlying α-granule and dense granule secretion.


Blood Platelets/enzymology , Hemostasis , Kinesins/metabolism , Megakaryocytes/enzymology , Platelet Activation , Secretory Vesicles/enzymology , Thrombosis/enzymology , Adenosine Triphosphate/blood , Animals , Blood Platelets/ultrastructure , Disease Models, Animal , Humans , Kinesins/blood , Kinesins/deficiency , Kinesins/genetics , Megakaryocytes/ultrastructure , Mice, Inbred C57BL , Mice, Knockout , P-Selectin/blood , Platelet Aggregation , Platelet Factor 4/blood , Secretory Pathway , Secretory Vesicles/genetics , Secretory Vesicles/ultrastructure , Signal Transduction , Thrombosis/blood , Thrombosis/genetics , Thrombosis/pathology , Vesicular Transport Proteins/blood , rab27 GTP-Binding Proteins/blood
19.
Blood ; 130(25): 2774-2785, 2017 12 21.
Article En | MEDLINE | ID: mdl-28928125

Platelets, anucleated megakaryocyte (MK)-derived cells, play a major role in hemostasis and arterial thrombosis. Although protein kinase casein kinase 2 (CK2) is readily detected in MKs and platelets, the impact of CK2-dependent signaling on MK/platelet (patho-)physiology has remained elusive. The present study explored the impact of the CK2 regulatory ß-subunit on platelet biogenesis and activation. MK/platelet-specific genetic deletion of CK2ß (ck2ß-/- ) in mice resulted in a significant macrothrombocytopenia and an increased extramedullar megakaryopoiesis with an enhanced proportion of premature platelets. Although platelet life span was only mildly affected, ck2ß-/- MK displayed an abnormal microtubule structure with a drastically increased fragmentation within bone marrow and a significantly reduced proplatelet formation in vivo. In ck2ß-/- platelets, tubulin polymerization was disrupted, resulting in an impaired thrombopoiesis and an abrogated inositol 1,4,5-triphosphate receptor-dependent intracellular calcium (Ca2+) release. Presumably due to a blunted increase in the concentration of cytosolic Ca2+, activation-dependent increases of α and dense-granule secretion and integrin αIIbß3 activation, and aggregation were abrogated in ck2ß-/- platelets. Accordingly, thrombus formation and stabilization under high arterial shear rates were significantly diminished, and thrombotic vascular occlusion in vivo was significantly blunted in ck2ß-/- mice, accompanied by a slight prolongation of bleeding time. Following transient middle cerebral artery occlusion, ck2ß-/- mice displayed significantly reduced cerebral infarct volumes, developed significantly less neurological deficits, and showed significantly better outcomes after ischemic stroke than ck2ßfl/fl mice. The present observations reveal CK2ß as a novel powerful regulator of thrombopoiesis, Ca2+-dependent platelet activation, and arterial thrombosis in vivo.


Casein Kinase II/physiology , Peptide Fragments/physiology , Platelet Activation , Thrombopoiesis , Thrombosis/pathology , Animals , Blood Platelets , Calcium Signaling , Casein Kinase II/deficiency , Megakaryocytes/metabolism , Megakaryocytes/pathology , Megakaryocytes/ultrastructure , Mice , Mice, Knockout , Peptide Fragments/deficiency , Thrombosis/etiology , Thrombosis/metabolism
20.
Blood ; 130(18): 2032-2042, 2017 11 02.
Article En | MEDLINE | ID: mdl-28903944

To uncover the role of Vps34, the sole class III phosphoinositide 3-kinase (PI3K), in megakaryocytes (MKs) and platelets, we created a mouse model with Vps34 deletion in the MK/platelet lineage (Pf4-Cre/Vps34lox/lox). Deletion of Vps34 in MKs led to the loss of its regulator protein, Vps15, and was associated with microthrombocytopenia and platelet granule abnormalities. Although Vps34 deficiency did not affect MK polyploidisation or proplatelet formation, it dampened MK granule biogenesis and directional migration toward an SDF1α gradient, leading to ectopic platelet release within the bone marrow. In MKs, the level of phosphatidylinositol 3-monophosphate (PI3P) was significantly reduced by Vps34 deletion, resulting in endocytic/trafficking defects. In platelets, the basal level of PI3P was only slightly affected by Vps34 loss, whereas the stimulation-dependent pool of PI3P was significantly decreased. Accordingly, a significant increase in the specific activity of Vps34 lipid kinase was observed after acute platelet stimulation. Similar to Vps34-deficient platelets, ex vivo treatment of wild-type mouse or human platelets with the Vps34-specific inhibitors, SAR405 and VPS34-IN1, induced abnormal secretion and affected thrombus growth at arterial shear rate, indicating a role for Vps34 kinase activity in platelet activation, independent from its role in MKs. In vivo, Vps34 deficiency had no impact on tail bleeding time, but significantly reduced platelet prothrombotic capacity after carotid injury. This study uncovers a dual role for Vps34 as a regulator of platelet production by MKs and as an unexpected regulator of platelet activation and arterial thrombus formation dynamics.


Blood Platelets/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Thrombosis/enzymology , Thrombosis/pathology , Animals , Cell Lineage , Cell Movement , Cytoplasmic Granules/metabolism , Intracellular Space/metabolism , Megakaryocytes/metabolism , Megakaryocytes/ultrastructure , Mice, Inbred C57BL , Phosphatidylinositol Phosphates/metabolism , Protein Transport , Reproducibility of Results , Thrombocytopenia/pathology
...